Continuous and open linings and treeings

S. Jackson

Department of Mathematics University of North Texas

August 25, 2023 Descriptive Set Theory and Dynamics University of Warsaw

4 日 ト 4 周 ト 4 ヨ ト 4 ヨ ト

The main results presented are joint with Cody Olsen.

We present some results and questions concerning clopen or open structures on equivalence relations induced by free continuous actions of \mathbb{Z}^n .

We use a combination of techniques including forcing, hyperaperiodicity, and orthogonality arguments.

伺下 イヨト イヨト

Let *X* be a Polish space, *G* a finitely generated marked groups, and $G \curvearrowright X$ a continuous free action of *G* on *X*. Let *E* be the corresponding equivalence relation.

Definition

A *k*-treeing of *E* is a subset *T* of the Schreier graph Γ such that on each class $[x], T \upharpoonright [x]$ is a vertex disjoint union of exactly *k* trees. A $\leq k$ treeing is where every $T \upharpoonright [x]$ is a vertex disjoint union of \leq trees.

• • = • • = •

Figure: A k = 2 treeing

A special case is that of a *k*-lining:

Definition

A *k*-lining of *E* is a subset *T* of the Schreier graph Γ such that on each class [x], $T \upharpoonright [x]$ is a vertex disjoint union of exactly *k* lines (an acyclic graph with every vertex degree 2). We similarly define a $\leq k$ lining.

If the domain T is all of X, we say T is a complete k-treeing or k-lining, etc.

A B F A B F

Figure: A k = 2 lining

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

We define the notions of the treeing or lining being Borel, clopen, or open in the natural way:

- We say a treeing or lining (T, E) is Borel if the set of edges is a Borel subset of X × X. (It follows that T is Borel as well).
- We say the treeing or lining (*T*, *E*) is clopen (resp. open) if for each g ∈ G {x: (x, g ⋅ x) ∈ E} is relatively clopen (resp. open) in *F*(*X*).

伺 ト イ ヨ ト イ ヨ ト

- Theorem (Marks-Unger, Gao-J-Krohne-Seward) There is a Borel complete lining of $F(2^{\mathbb{Z}^n})$.
- Theorem (Gao-J-Krohne-Seward) There is no clopen lining on $F(2^{\mathbb{Z}^n})$ for any $n \ge 2$.
- Theorem (Gao-J-Krohne-Seward, Grebik-Rozhon, Weilacher, Bencs-Hruskova-Tóth) There is a Borel matching of $F(2^{\mathbb{Z}^n})$ for any $n \ge 2$.

We state some results which use a combination of forcing and hyperaperiodicity arguments.

Theorem

Let E be generated by the continuous free action of \mathbb{Z}^n on a 0-dimensional space. Then E does not admit an open k-treeing for any $k \ge 1$.

Corollary

 $F(2^{\mathbb{Z}^n})$ does not admit an open k-lining for any k and any $n \ge 2$.

On the other hand we have the following.

Theorem

Let E be generated by the continuous free action of \mathbb{Z}^n on a 0-dimensional space. Then E has an open $\leq n + 1$ treeing.

Recently we have improved this to:

Theorem

Let E be generated by the continuous free action of \mathbb{Z}^2 on a 0-dimensional space. Then E has an open ≤ 5 lining.

The following are still open:

Question Does $F(2^{\mathbb{Z}^2})$ have a clopen $\leq k$ lining for some k?

Question Does $F(2^{\mathbb{Z}^2})$ have a clopen $\leq k$ treeing for some k?

Let $\Gamma \curvearrowright X$ be a continuous action of *G* on the Polish space *X*. Let *E* be the induced equivalence relation on *X*.

Definition

We say $x \in X$ is hyperaperiodic if $\overline{[x]} \subseteq F(X)$, the free part of the action.

We say $x \in 2^{G}$ is hyperaperiodic if it hyperaperiodic as an element of the (left) shift action of *G* on 2^{G} .

Theorem (Gao-J-Seward)

For every countable group G there is a hyperaperiodic element.

伺下 イヨト イヨト

There is a combinatorial condition on $x \in 2^G$ equivalent to it being a hyperaperiodic element.

$$\forall s \neq 1_G \exists T \in G^{<\omega} \forall g \in G \exists t \in T \ x(gt) \neq x(gst)$$

For $G = \mathbb{Z}^n$ these elements are easy to construct directly.

There is a forcing notion \mathbb{P}_{gp} , the grid-periodicity forcing which adjoins a hyperaperiodic element x_G of $F(2^{\mathbb{Z}^n})$ with extra properties (we use n = 2):

- \blacktriangleright *x*_{*G*} is a minimal element.
- For every k, x ↾ [-k, k]ⁿ occurs with a period (m, m), for some m.

4 同 ト 4 三 ト 4 三 ト -

Let $n \in \mathbb{Z}^+$. The grid periodicity forcing \mathbb{P}_{gp} is defined as follows.

- ▶ A condition $p \in \mathbb{P}_{gp}$ is a function $p: R \setminus \{u\} \to \{0, 1\}$ where $R = [a, b] \times [c, d]$ is a rectangle in \mathbb{Z}^2 and $u \in R$. Also, both the width b a + 1 and height h = d c + 1 are powers of *n*.
- ▶ $q \le p$ if R_q is obtained by a rectangular tiling by copies of R_p . If $c \in R_q$ is in the copy $R_p + t$ and $c - t \ne u_p$, then q(c) = p(c - t). Also, u_q is one of the translated copies of u_p .

< 🗇 > < 🖃 > < 🖃 >

•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	٠	•
•	•	٠	•	٠	•

Figure: The extension relation in the grid periodicity forcing \mathbb{P}_{gp} .

イロト イロト イヨト イヨト

Э.

Let $\mathbb{P} = \mathbb{P}_{gp}$ and let x_G be generic for \mathbb{P}_{gp} .

Lemma

 x_G is hyperaperiodic and minimal.

Proof: Fix $s \neq 1_G = (0, 0)$. Let $p \in \mathbb{P}_{gp}$. There is a $q \leq p$ such that $u_q + s \in \text{dom}(q)$. There is an $r \leq q$ with two copies q_1, q_2 of q (except for $u_1 = u(q_1), u_2 = u(q_2)$) and with $r(u_1) \neq r(u_2)$ (with both defined). Then T = dom(r) witnesses the statement of hyperaperiodicity for s. By density, x_G is hyperaperiodic.

The proof of minimality for x_G is similar to the next lemma.

A (1) < A (2) < A (2) </p>

Lemma

Let $A \subseteq \mathbb{Z}^2$ be finite. Then there is a lattice $L \subseteq \mathbb{Z}^2$ such that $x_G \upharpoonright A = x_G \upharpoonright (A + (a, b))$ for any $(a, b) \in L$.

Proof: Fix $A \subseteq \mathbb{Z}^2$ and $p \in \mathbb{P}_{gp}$. There is a $q \leq p$ such that $A \subseteq dom(q) \setminus u(q)$. If dom(q) has side lengths a, b, then can take $L = \mathbb{Z}(a, 0) + \mathbb{Z}(0, b)$.

伺下 イヨト イヨト

We sketch the proof of the following.

Theorem

For any $n \ge 2$ and any $k \ge 1$, there is no open k-treeing of $F(2^{\mathbb{Z}^n})$.

We take n = 2 for simplicity.

We let $\mathbb{P} = \mathbb{P}_{gp}$ be the grid-periodicity forcing for joining an element of $F(2^{\mathbb{Z}^2})$.

Let x_G be generic for \mathbb{P} .

- \blacktriangleright x_G is hyperaperiodic.
- x_G is also a minimal element.

A B F A B F

Let $K = \overline{[x_G]}$. $K \subseteq X = F(2^{\mathbb{Z}^2})$ is compact. Let T_1, \ldots, T_k be the trees on $[x_G]$. Let $p \in \mathbb{P}$ be such that

> $p \Vdash \forall_{1 \le i \le k} g_i \cdot \dot{x}_G \in T$ $\land \forall_{i \ne j} g_i \cdot \dot{x}_G, g_j \cdot \dot{x}_G \text{ are not in the same } T \text{ component.}$

Say $U \approx p \in 2^{[-N_0,N_0]^2}$ be the basic open set corresponding to p. Without loss of generality we may assume $||g_i|| < N_0$.

伺 ト イ ヨ ト イ ヨ ト

Figure: The generic class for k = 2

ヘロト ヘロト ヘヨト ヘヨト

= 990

Since *T* is open, we may assume that for some $m < N_0$ that the $m \times m$ neighborhood V_i about each $g_i = (a_i, b_i)$ is contained in *p* and determines that $g_i \cdot x \in T$.

By grid periodicity, there is an $N_1 > N_0$ such that (N_1, N_1) is a period for U in x_G .

For each $x \in K$ and each set *s* of occurrences of k + 1 many neighborhoods W_1, \ldots, W_{k+1} in $x \upharpoonright [-2N_1, 2N_1]^2$, where each W_i is one of the V_1, \ldots, V_k , there is an n_x^s such that $x \upharpoonright [-n_x^s, n_x^s]$ determines a path in a component of *T* between two of the center points of a W_i and a W_j , $i \neq j$.

By compactness of K, there is an $N_2 > N_1$ such that for all $x \in K$ and any occurrence s of W_1, \ldots, W_{k+1} in $x \upharpoonright [-2N_1, 2N_1]^2$, two of the center points are connected by a path in T of length $< N_2$.

Consider now a rectangular "ring" of copies of U, with the spacing between adjacent copies N_1 . This can be found in x_G by definition of N_1 . The side length of the ring is at least $3N_2$.

Let U^1, \ldots, U^ℓ denote these copies of U in x_G . Let V_1^i, \ldots, V_k^i denotes the corresponding copies of V_1, \ldots, V_k in U^i .

Let x_1^i, \ldots, x_k^i be the shifts of x_G which are centered at the copies of V_1^i, \ldots, V_k^i respectively.

(4) (日本) (4) (日本)

э

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - の々ぐ

For each $1 \le i \le \ell$, consider the points $x_1^i, \ldots, x_k^i, x_1^{i+1}$.

Two of these points must be connected by a path of length $\leq N_2$ By genericity and the definition of *P* (and since shifting is an automorphism of \mathbb{P}), the path must connect x_1^{i+1} with one of the x_a^i .

Repeating the argument, we have that all of the x_a^i are connected to one of the x_b^{i+1} by a path of length $< N_2$.

These paths connect distinct points with distinct points.

(人間) とくま とくま とう

This gives a set of *k* paths in *T* starting and ending at the x_0^1, \ldots, x_k^1 . One of these *k* paths must start and end at the same point x_i^1 (since *U* forced that distinct x_i^1 are not connected in *T*). This gives a cycle in *T*.

This cycle is non-trivial as the side lengths of the ring are > $3N_2$, and the paths from one U^i to U^{i+1} is at most N_2 .

We sketch the proof of the following theorem.

Theorem There is an open \leq 3 treeing of $F(2^{\mathbb{Z}^2})$.

Let $d_0 < d_1 < \cdots$ be fast growing.

For each *i*, there is a clopen tiling \mathcal{R}_i of $F(2^{\mathbb{Z}^2})$ by rectangles with side lengths in $\{d_i, d_i + 1\}$.

伺下 イヨト イヨト

We define a sequence of clopen treeings $T_0 \subseteq T_1 \subseteq \cdots$.

- Each component of any T_i is finite.
- ► Each component of a T_i is contained within $d_0 + \cdots + d_{i-1}$ of a rectangular region $R \in \mathcal{R}_i$.

< 回 > < 回 > < 回 >

Assume T_{i-1} has been defined.

For each $R \in \mathcal{R}_i$, let $T_i(R)$ be the component trees of T_{i-1} for which R is the least rectangle in \mathcal{R}_i intersecting it.

Clearly $\cup T_i(R) \subseteq B_\rho(R, d_0 + \cdots + d_{i-1}).$

Add the shortest path between two trees in $T_{i-1}(R)$. This doesn't add any cycles. Continue until the trees in $T_{i-1}(R)$ are connected into a single tree.

The resulting tree is a component of $T_i(R)$.

A (10) × A (10) ×

Let
$$T = \bigcup_i T_i = \bigcup_i \bigcup_{R \in \mathcal{R}_i} T_i(R)$$
.

Claim

Each E class has at most 3 components of T.

Proof.

Suppose x_1, \ldots, x_4 are *E*-equivalent and in different *T* components. Let $d = \max \rho(x_i, x_y)$. Choose *i* with $d_i \gg d$. Then $B_{\rho}(x_1, 2d)$ can intersect at most 3 distinct $R \in \mathcal{R}_i$. So, two of the x_i are connected in T_{i+1} .

A B F A B F

We sketch a proof of the following.

Theorem

There is an open $\leq k$ lining of $F(2^{\mathbb{Z}^2})$ for some k (can take k = 5).

We make use of the following lemma.

Lemma

There is a sequence of clopen rectangular tilings \mathcal{R}_i with side lengths in $\{d_1, d_i + 1\}$ such that for each *i* and each R_{i+1} rectangle R, R can be divided into at most 3 subrectangles S such that the rectangles in \mathcal{R}_i which intersect S are of the same size and form a rectangular gird.

A B F A B F

Figure: Statement of the Lemma

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ○ ◆ ○

To do this, we use an auxiliary tiling $\tilde{\mathcal{R}}_{i+2}$ of scale d_{i+2} , and then subdivide each $\tilde{R} \in \tilde{\mathcal{R}}_{i+2}$ into $\approx d_i$ size subrectangles.

At stage *i*, we have three types of line segments: those following vertical boundaries of R_i rectangles (within $2d_{i-1}$), those following horizontal boundaries of R_i rectangles, and those which are internal to R_i rectangles.

A B F A B F

Figure: Inductive construction

イロト イロト イヨト イヨト

Э.

Question

Does there exists a clopen $\leq k$ lining of $F(2^{\mathbb{Z}^n})$?

Question

What is the least k so that there is an open $\leq k$ treeing of $F(2^{\mathbb{Z}^n})$?

Question

Does there exists a clopen $\leq k$ treeing of $F(2^{\mathbb{Z}^n})$?

A (10) × A (10) × A (10) ×