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The main results presented are joint with Cody Olsen.

We present some results and questions concerning clopen or open
structures on equivalence relations induced by free continuous
actions of Zn.

We use a combination of techniques including forcing,
hyperaperiodicity, and orthogonality arguments.
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Statement of results

Let X be a Polish space, G a finitely generated marked groups,
and G y X a continuous free action of G on X . Let E be the
corresponding equivalence relation.

Definition
A k -treeing of E is a subset T of the Schreier graph Γ such that on
each class [x], T � [x] is a vertex disjoint union of exactly k trees.
A ≤ k treeing is where every T � [x] is a vertex disjoint union of ≤
trees.
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Figure: A k = 2 treeing
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A special case is that of a k -lining:

Definition
A k -lining of E is a subset T of the Schreier graph Γ such that on
each class [x], T � [x] is a vertex disjoint union of exactly k lines
(an acyclic graph with every vertex degree 2). We similarly define a
≤ k lining.

I If the domain T is all of X , we say T is a complete k -treeing or
k -lining, etc.
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Figure: A k = 2 lining
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We define the notions of the treeing or lining being Borel, clopen,
or open in the natural way:

I We say a treeing or lining (T ,E) is Borel if the set of edges is
a Borel subset of X × X . (It follows that T is Borel as well).

I We say the treeing or lining (T ,E) is clopen (resp. open) if for
each g ∈ G {x : (x, g · x) ∈ E} is relatively clopen (resp. open)
in F(X).
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Some Previous Results

Theorem (Marks-Unger, Gao-J-Krohne-Seward)
There is a Borel complete lining of F(2Z

n
).

Theorem (Gao-J-Krohne-Seward)
There is no clopen lining on F(2Z

n
) for any n ≥ 2.

Theorem (Gao-J-Krohne-Seward, Grebik-Rozhon,
Weilacher, Bencs-Hruskova-Tóth)
There is a Borel matching of F(2Z

n
) for any n ≥ 2.

S. Jackson Continuous and open linings and treeings



We state some results which use a combination of forcing and
hyperaperiodicity arguments.

Theorem
Let E be generated by the continuous free action of Zn on a
0-dimensional space. Then E does not admit an open k-treeing for
any k ≥ 1.

Corollary
F(2Z

n
) does not admit an open k -lining for any k and any n ≥ 2.
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On the other hand we have the following.

Theorem
Let E be generated by the continuous free action of Zn on a
0-dimensional space. Then E has an open ≤ n + 1 treeing.

Recently we have improved this to:

Theorem
Let E be generated by the continuous free action of Z2 on a
0-dimensional space. Then E has an open ≤ 5 lining.
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The following are still open:

Question
Does F(2Z

2
) have a clopen ≤ k lining for some k?

Question
Does F(2Z

2
) have a clopen ≤ k treeing for some k?
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Hyperaperiodicity

Let Γy X be a continuous action of G on the Polish space X . Let
E be the induced equivalence relation on X .

Definition
We say x ∈ X is hyperaperiodic if [x] ⊆ F(X), the free part of the
action.

We say x ∈ 2G is hyperaperiodic if it hyperaperiodic as an element
of the (left) shift action of G on 2G .

Theorem (Gao-J-Seward)
For every countable group G there is a hyperaperiodic element.
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There is a combinatorial condition on x ∈ 2G equivalent to it being
a hyperaperiodic element.

∀s , 1G ∃T ∈ G<ω ∀g ∈ G ∃t ∈ T x(gt) , x(gst)

For G = Zn these elements are easy to construct directly.

There is a forcing notion Pgp, the grid-periodicity forcing which
adjoins a hyperaperiodic element xG of F(2Z

n
) with extra

properties (we use n = 2):
I xG is a minimal element.
I For every k , x � [−k , k ]n occurs with a period (m,m), for

some m.
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Grid periodicity forcing

Let n ∈ Z+. The grid periodicity forcing Pgp is defined as follows.
I A condition p ∈ Pgp is a function p : R \ {u} → {0, 1} where

R = [a, b] × [c, d] is a rectangle in Z2 and u ∈ R. Also, both
the width b − a + 1 and height h = d − c + 1 are powers of n.

I q ≤ p if Rq is obtained by a rectangular tiling by copies of Rp .
If c ∈ Rq is in the copy Rp + t and c − t , up , then
q(c) = p(c − t). Also, uq is one of the translated copies of up .
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Figure: The extension relation in the grid periodicity forcing Pgp .
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Let P = Pgp and let xG be generic for Pgp.

Lemma
xG is hyperaperiodic and minimal.

Proof: Fix s , 1G = (0, 0). Let p ∈ Pgp. There is a q ≤ p such that
uq + s ∈ dom(q). There is an r ≤ q with two copies q1, q2 of q
(except for u1 = u(q1), u2 = u(q2)) and with r(u1) , r(u2) (with
both defined). Then T = dom(r) witnesses the statement of
hyperaperiodicity for s. By density, xG is hyperaperiodic.

The proof of minimality for xG is similar to the next lemma.
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Lemma
Let A ⊆ Z2 be finite. Then there is a lattice L ⊆ Z2 such that
xG � A = xG � (A + (a, b)) for any (a, b) ∈ L.

Proof: Fix A ⊆ Z2 and p ∈ Pgp. There is a q ≤ p such that
A ⊆ dom(q) \ u(q). If dom(q) has side lengths a, b, then can take
L = Z(a, 0) + Z(0, b).
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Nonexistence of open k -treeings

We sketch the proof of the following.

Theorem
For any n ≥ 2 and any k ≥ 1, there is no open k-treeing of F(2Z

n
).

We take n = 2 for simplicity.

We let P = Pgp be the grid-periodicity forcing for joining an element
of F(2Z

2
).

Let xG be generic for P.
I xG is hyperaperiodic.
I xG is also a minimal element.
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Let K = [xG]. K ⊆ X = F(2Z
2
) is compact.

Let T1, . . . ,Tk be the trees on [xG].

Let p ∈ P be such that

p 
∀1≤i≤k gi · ẋG ∈ T

∧ ∀i,j gi · ẋG , gj · ẋG are not in the same T component.

Say U ≈ p ∈ 2[−N0,N0]
2

be the basic open set corresponding to p.
Without loss of generality we may assume ‖gi‖ < N0.
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Figure: The generic class for k = 2

S. Jackson Continuous and open linings and treeings



Since T is open, we may assume that for some m < N0 that the
m ×m neighborhood Vi about each gi = (ai , bi) is contained in p
and determines that gi · x ∈ T .

By grid periodicity, there is an N1 > N0 such that (N1,N1) is a
period for U in xG .

For each x ∈ K and each set s of occurrences of k + 1 many
neighborhoods W1, . . . ,Wk+1 in x � [−2N1, 2N1]2, where each Wi

is one of the V1, . . . ,Vk , there is an ns
x such that x � [−ns

x , n
s
x ]

determines a path in a component of T between two of the center
points of a Wi and a Wj , i , j.
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By compactness of K , there is an N2 > N1 such that for all x ∈ K
and any occurrence s of W1, . . . ,Wk+1 in x � [−2N1, 2N1]2, two of
the center points are connected by a path in T of length < N2.

Consider now a rectangular “ring” of copies of U, with the spacing
between adjacent copies N1. This can be found in xG by definition
of N1. The side length of the ring is at least 3N2.

Let U1, . . . ,U` denote these copies of U in xG . Let V i
1, . . . ,V

i
k

denotes the corresponding copies of V1, . . . ,Vk in Ui .

Let x i
1, . . . , x

i
k be the shifts of xG which are centered at the copies

of V i
1, . . . ,V

i
k respectively.
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For each 1 ≤ i ≤ `, consider the points x i
1, . . . , x

i
k , x

i+1
1 .

Two of these points must be connected by a path of length ≤ N2 By
genericity and the definition of P (and since shifting is an
automorphism of P), the path must connect x i+1

1 with one of the x i
a .

Repeating the argument, we have that all of the x i
a are connected

to one of the x i+1
b by a path of length < N2.

These paths connect distinct points with distinct points.
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This gives a set of k paths in T starting and ending at the
x1

0 , . . . , x
1
k . One of these k paths must start and end at the same

point x1
i (since U forced that distinct x1

i are not connected in T ).

This gives a cycle in T .

This cycle is non-trivial as the side lengths of the ring are > 3N2,
and the paths from one Ui to Ui+1 is at most N2.
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Existence of open ≤ 3 treeings for F(2Z
2
)

We sketch the proof of the following theorem.

Theorem
There is an open ≤ 3 treeing of F(2Z

2
).

Let d0 < d1 < · · · be fast growing.

For each i, there is a clopen tiling Ri of F(2Z
2
) by rectangles with

side lengths in {di , di + 1}.
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We define a sequence of clopen treeings T0 ⊆ T1 ⊆ · · · .
I Each component of any Ti is finite.
I Each component of a Ti is contained within d0 + · · ·+ di−1 of a

rectangular region R ∈ Ri .
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Assume Ti−1 has been defined.

For each R ∈ Ri , let Ti(R) be the component trees of Ti−1 for which
R is the least rectangle in Ri intersecting it.

Clearly ∪Ti(R) ⊆ Bρ(R , d0 + · · ·+ di−1).

Add the shortest path between two trees in Ti−1(R). This doesn’t
add any cycles. Continue until the trees in Ti−1(R) are connected
into a single tree.

The resulting tree is a component of Ti(R).
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Let T =
⋃

i Ti =
⋃

i
⋃

R∈Ri
Ti(R).

Claim
Each E class has at most 3 components of T.

Proof.
Suppose x1, . . . , x4 are E-equivalent and in different T
components. Let d = max ρ(xi , xy). Choose i with di � d. Then
Bρ(x1, 2d) can intersect at most 3 distinct R ∈ Ri . So, two of the xi

are connected in Ti+1.
�
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We sketch a proof of the following.

Theorem
There is an open ≤ k lining of F(2Z

2
) for some k (can take k = 5).

We make use of the following lemma.

Lemma
There is a sequence of clopen rectangular tilings Ri with side
lengths in {d1, di + 1} such that for each i and each Ri+1 rectangle
R, R can be divided into at most 3 subrectangles S such that the
rectangles in Ri which intersect S are of the same size and form a
rectangular gird.
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Figure: Statement of the Lemma
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To do this, we use an auxiliary tiling R̃i+2 of scale di+2, and then
subdivide each R̃ ∈ R̃i+2 into ≈ di size subrectangles.

At stage i, we have three types of line segments: those following
vertical boundaries of Ri rectangles (within 2di−1), those following
horizontal boundaries of Ri rectangles, and those which are
internal to Ri rectangles.
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Figure: Inductive construction
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Questions

Question
Does there exists a clopen ≤ k lining of F(2Z

n
)?

Question
What is the least k so that there is an open ≤ k treeing of F(2Z

n
)?

Question
Does there exists a clopen ≤ k treeing of F(2Z

n
)?
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