Continuous and open linings and treeings

S. Jackson

Department of Mathematics
University of North Texas
August 25, 2023
Descriptive Set Theory and Dynamics
University of Warsaw

The main results presented are joint with Cody Olsen.
We present some results and questions concerning clopen or open structures on equivalence relations induced by free continuous actions of \mathbb{Z}^{n}.

We use a combination of techniques including forcing, hyperaperiodicity, and orthogonality arguments.

Statement of results

Let X be a Polish space, G a finitely generated marked groups, and $G \curvearrowright X$ a continuous free action of G on X. Let E be the corresponding equivalence relation.

Definition

A k-treeing of E is a subset T of the Schreier graph Γ such that on each class $[x], T \upharpoonright[x]$ is a vertex disjoint union of exactly k trees. A $\leq k$ treeing is where every $T \upharpoonright[x]$ is a vertex disjoint union of \leq trees.

Figure: A $k=2$ treeing

A special case is that of a k-lining:

Definition

A k-lining of E is a subset T of the Schreier graph Γ such that on each class $[x], T \upharpoonright[x]$ is a vertex disjoint union of exactly k lines (an acyclic graph with every vertex degree 2). We similarly define a $\leq k$ lining.

- If the domain T is all of X, we say T is a complete k-treeing or k-lining, etc.

Figure: $\mathrm{A} k=2$ lining

We define the notions of the treeing or lining being Borel, clopen, or open in the natural way:

- We say a treeing or lining (T, E) is Borel if the set of edges is a Borel subset of $X \times X$. (It follows that T is Borel as well).
- We say the treeing or lining (T, E) is clopen (resp. open) if for each $g \in G\{x:(x, g \cdot x) \in E\}$ is relatively clopen (resp. open) in $F(X)$.

Some Previous Results

Theorem (Marks-Unger, Gao-J-Krohne-Seward)
 There is a Borel complete lining of $F\left(2^{Z^{n}}\right)$.

Theorem (Gao-J-Krohne-Seward)
There is no clopen lining on $F\left(2^{Z^{n}}\right)$ for any $n \geq 2$.
Theorem (Gao-J-Krohne-Seward, Grebik-Rozhon, Weilacher, Bencs-Hruskova-Tóth)
There is a Borel matching of $F\left(2^{Z^{n}}\right)$ for any $n \geq 2$.

We state some results which use a combination of forcing and hyperaperiodicity arguments.

Theorem
Let E be generated by the continuous free action of \mathbb{Z}^{n} on a 0 -dimensional space. Then E does not admit an open k-treeing for any $k \geq 1$.

Corollary
$F\left(2^{Z^{n}}\right)$ does not admit an open k-lining for any k and any $n \geq 2$.

On the other hand we have the following.
Theorem
Let E be generated by the continuous free action of \mathbb{Z}^{n} on a 0 -dimensional space. Then E has an open $\leq n+1$ treeing.

Recently we have improved this to:

Theorem

Let E be generated by the continuous free action of \mathbb{Z}^{2} on a 0 -dimensional space. Then E has an open ≤ 5 lining.

The following are still open:
Question
Does $F\left(2^{\mathbb{Z}^{2}}\right)$ have a clopen $\leq k$ lining for some k ?
Question
Does $F\left(2^{\mathbb{Z}^{2}}\right)$ have a clopen $\leq k$ treeing for some k ?

Hyperaperiodicity

Let $\Gamma \curvearrowright X$ be a continuous action of G on the Polish space X. Let E be the induced equivalence relation on X.

Definition
We say $x \in X$ is hyperaperiodic if $\overline{[x]} \subseteq F(X)$, the free part of the action.

We say $x \in 2^{G}$ is hyperaperiodic if it hyperaperiodic as an element of the (left) shift action of G on 2^{G}.

Theorem (Gao-J-Seward)
For every countable group G there is a hyperaperiodic element.

There is a combinatorial condition on $x \in 2^{G}$ equivalent to it being a hyperaperiodic element.

$$
\forall s \neq 1_{G} \exists T \in G^{<\omega} \forall g \in G \exists t \in T x(g t) \neq x(g s t)
$$

For $G=\mathbb{Z}^{n}$ these elements are easy to construct directly.
There is a forcing notion \mathbb{P}_{gp}, the grid-periodicity forcing which adjoins a hyperaperiodic element x_{G} of $F\left(2^{Z^{n}}\right)$ with extra properties (we use $n=2$):

- x_{G} is a minimal element.
- For every $k, x \upharpoonright[-k, k]^{n}$ occurs with a period (m, m), for some m.

Grid periodicity forcing

Let $n \in \mathbb{Z}^{+}$. The grid periodicity forcing $\mathbb{P}_{g p}$ is defined as follows.

- A condition $p \in \mathbb{P}_{\mathrm{gp}}$ is a function $p: R \backslash\{u\} \rightarrow\{0,1\}$ where $R=[a, b] \times[c, d]$ is a rectangle in \mathbb{Z}^{2} and $u \in R$. Also, both the width $b-a+1$ and height $h=d-c+1$ are powers of n.
- $q \leq p$ if R_{q} is obtained by a rectangular tiling by copies of R_{p}. If $c \in R_{q}$ is in the copy $R_{p}+t$ and $c-t \neq u_{p}$, then $q(c)=p(c-t)$. Also, u_{q} is one of the translated copies of u_{p}.

Figure: The extension relation in the grid periodicity forcing $\mathbb{P}_{g p}$.

Let $\mathbb{P}=\mathbb{P}_{\mathrm{gp}}$ and let x_{G} be generic for \mathbb{P}_{gp}.
Lemma
x_{G} is hyperaperiodic and minimal.
Proof: Fix $s \neq 1_{G}=(0,0)$. Let $p \in \mathbb{P}_{\text {gp }}$. There is a $q \leq p$ such that $u_{q}+s \in \operatorname{dom}(q)$. There is an $r \leq q$ with two copies q_{1}, q_{2} of q (except for $u_{1}=u\left(q_{1}\right), u_{2}=u\left(q_{2}\right)$) and with $r\left(u_{1}\right) \neq r\left(u_{2}\right)$ (with both defined). Then $T=\operatorname{dom}(r)$ witnesses the statement of hyperaperiodicity for s. By density, x_{G} is hyperaperiodic.

The proof of minimality for x_{G} is similar to the next lemma.

Lemma

Let $A \subseteq \mathbb{Z}^{2}$ be finite. Then there is a lattice $L \subseteq \mathbb{Z}^{2}$ such that $x_{G} \upharpoonright A=x_{G} \upharpoonright(A+(a, b))$ for any $(a, b) \in L$.

Proof: Fix $A \subseteq \mathbb{Z}^{2}$ and $p \in \mathbb{P}_{g p}$. There is a $q \leq p$ such that $A \subseteq \operatorname{dom}(q) \backslash u(q)$. If $\operatorname{dom}(q)$ has side lengths a, b, then can take $L=\mathbb{Z}(a, 0)+\mathbb{Z}(0, b)$.

Nonexistence of open k-treeings

We sketch the proof of the following.
Theorem
For any $n \geq 2$ and any $k \geq 1$, there is no open k-treeing of $F\left(2^{\mathbb{Z}^{n}}\right)$.
We take $n=2$ for simplicity.
We let $\mathbb{P}=\mathbb{P}_{\text {gp }}$ be the grid-periodicity forcing for joining an element of $F\left(2^{\mathbb{Z}^{2}}\right)$.

Let x_{G} be generic for \mathbb{P}.

- x_{G} is hyperaperiodic.
- x_{G} is also a minimal element.

Let $K=\overline{\left[x_{G}\right]} . K \subseteq X=F\left(2^{\mathbb{Z}^{2}}\right)$ is compact.
Let T_{1}, \ldots, T_{k} be the trees on $\left[x_{G}\right]$.
Let $p \in \mathbb{P}$ be such that

$$
\begin{aligned}
& p \Vdash \forall_{1 \leq i \leq k} g_{i} \cdot \dot{x}_{G} \in T \\
& \quad \wedge \forall_{i \neq j} g_{i} \cdot \dot{x}_{G}, g_{j} \cdot \dot{x}_{G} \text { are not in the same } T \text { component. }
\end{aligned}
$$

Say $U \approx p \in 2^{\left[-N_{0}, N_{0}\right]^{2}}$ be the basic open set corresponding to p. Without loss of generality we may assume $\left\|g_{i}\right\|<N_{0}$.

Figure: The generic class for $k=2$

Since T is open, we may assume that for some $m<N_{0}$ that the $m \times m$ neighborhood V_{i} about each $g_{i}=\left(a_{i}, b_{i}\right)$ is contained in p and determines that $g_{i} \cdot x \in T$.

By grid periodicity, there is an $N_{1}>N_{0}$ such that $\left(N_{1}, N_{1}\right)$ is a period for U in x_{G}.

For each $x \in K$ and each set s of occurrences of $k+1$ many neighborhoods W_{1}, \ldots, W_{k+1} in $x \upharpoonright\left[-2 N_{1}, 2 N_{1}\right]^{2}$, where each W_{i} is one of the V_{1}, \ldots, V_{k}, there is an n_{x}^{s} such that $x \upharpoonright\left[-n_{x}^{s}, n_{x}^{s}\right]$ determines a path in a component of T between two of the center points of a W_{i} and a $W_{j}, i \neq j$.

By compactness of K, there is an $N_{2}>N_{1}$ such that for all $x \in K$ and any occurrence s of W_{1}, \ldots, W_{k+1} in $x \upharpoonright\left[-2 N_{1}, 2 N_{1}\right]^{2}$, two of the center points are connected by a path in T of length $<N_{2}$.
Consider now a rectangular "ring" of copies of U, with the spacing between adjacent copies N_{1}. This can be found in x_{G} by definition of N_{1}. The side length of the ring is at least $3 N_{2}$.
Let U^{1}, \ldots, U^{ℓ} denote these copies of U in x_{G}. Let $V_{1}^{i}, \ldots, V_{k}^{i}$ denotes the corresponding copies of V_{1}, \ldots, V_{k} in U^{i}.

Let $x_{1}^{i}, \ldots, x_{k}^{i}$ be the shifts of x_{G} which are centered at the copies of $V_{1}^{i}, \ldots, V_{k}^{i}$ respectively.

For each $1 \leq i \leq \ell$, consider the points $x_{1}^{i}, \ldots, x_{k}^{i}, x_{1}^{i+1}$.
Two of these points must be connected by a path of length $\leq N_{2}$ By genericity and the definition of P (and since shifting is an automorphism of \mathbb{P}), the path must connect x_{1}^{i+1} with one of the x_{a}^{i}.

Repeating the argument, we have that all of the x_{a}^{i} are connected to one of the x_{b}^{i+1} by a path of length $<N_{2}$.
These paths connect distinct points with distinct points.

This gives a set of k paths in T starting and ending at the $x_{0}^{1}, \ldots, x_{k}^{1}$. One of these k paths must start and end at the same point x_{i}^{1} (since U forced that distinct x_{i}^{1} are not connected in T). This gives a cycle in T.

This cycle is non-trivial as the side lengths of the ring are $>3 N_{2}$, and the paths from one U^{i} to U^{i+1} is at most N_{2}.

Existence of open ≤ 3 treeings for $F\left(2^{\mathbb{Z}^{2}}\right)$

We sketch the proof of the following theorem.
Theorem
There is an open ≤ 3 treeing of $F\left(2^{\mathbb{Z}^{2}}\right)$.
Let $d_{0}<d_{1}<\cdots$ be fast growing.
For each i, there is a clopen tiling \mathcal{R}_{i} of $F\left(2^{\mathbb{Z}^{2}}\right)$ by rectangles with side lengths in $\left\{d_{i}, d_{i}+1\right\}$.

We define a sequence of clopen treeings $T_{0} \subseteq T_{1} \subseteq \cdots$.

- Each component of any T_{i} is finite.
- Each component of a T_{i} is contained within $d_{0}+\cdots+d_{i-1}$ of a rectangular region $R \in \mathcal{R}_{i}$.

Assume T_{i-1} has been defined.
For each $R \in \mathcal{R}_{i}$, let $T_{i}(R)$ be the component trees of T_{i-1} for which R is the least rectangle in \mathcal{R}_{i} intersecting it.

Clearly $\cup T_{i}(R) \subseteq B_{\rho}\left(R, d_{0}+\cdots+d_{i-1}\right)$.
Add the shortest path between two trees in $T_{i-1}(R)$. This doesn't add any cycles. Continue until the trees in $T_{i-1}(R)$ are connected into a single tree.

The resulting tree is a component of $T_{i}(R)$.

Let $T=\bigcup_{i} T_{i}=\bigcup_{i} \bigcup_{R \in \mathcal{R}_{i}} T_{i}(R)$.
Claim
Each E class has at most 3 components of T.

Proof.

Suppose x_{1}, \ldots, x_{4} are E-equivalent and in different T components. Let $d=\max \rho\left(x_{i}, x_{y}\right)$. Choose i with $d_{i} \gg d$. Then $B_{\rho}\left(x_{1}, 2 d\right)$ can intersect at most 3 distinct $R \in \mathcal{R}_{i}$. So, two of the x_{i} are connected in T_{i+1}.

We sketch a proof of the following.

Theorem

There is an open $\leq k$ lining of $F\left(2^{\mathbb{Z}^{2}}\right)$ for some k (can take $k=5$).
We make use of the following lemma.

Lemma

There is a sequence of clopen rectangular tilings \mathcal{R}_{i} with side lengths in $\left\{d_{1}, d_{i}+1\right\}$ such that for each i and each R_{i+1} rectangle R, R can be divided into at most 3 subrectangles S such that the rectangles in \mathcal{R}_{i} which intersect S are of the same size and form a rectangular gird.

Figure: Statement of the Lemma

To do this, we use an auxiliary tiling $\tilde{\mathcal{R}}_{i+2}$ of scale d_{i+2}, and then subdivide each $\tilde{R} \in \tilde{\mathcal{R}}_{i+2}$ into $\approx d_{i}$ size subrectangles.

At stage i, we have three types of line segments: those following vertical boundaries of R_{i} rectangles (within $2 d_{i-1}$), those following horizontal boundaries of R_{i} rectangles, and those which are internal to R_{i} rectangles.

Figure: Inductive construction

Questions

Question
Does there exists a clopen $\leq k$ lining of $F\left(2^{Z^{n}}\right)$?
Question
What is the least k so that there is an open $\leq k$ treeing of $F\left(2^{Z^{n}}\right)$?
Question
Does there exists a clopen $\leq k$ treeing of $F\left(2^{Z^{n}}\right)$?

